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The problem of computing dependability measures of repairable systems with general failure, repair
and maintcnance processes is @ hard problem fo solvc in general cither by analvtical or by numerical
methods. Monte Carlo simulation could be used to <olve this problem, however, standard <imu-
lation takes a verv long time to estimate svstem rehability and availability with reasonable accuracy
because typically the system fuilure is a rare cvent. When the failure and repair time distributions
arc exponential, impor tanee sampling has been used snccessfully in the past to reduce simulation un
lengths.  In this paper. we extend the applicability of importance sampling to non-Markovian
madels with general failure and repair time distributions. \We <how that by carcfully sclecting a
heurnistic for importance sampling, orders of magnitude reduction in <imulation run-lengths can be
obtaincd. We illustrate the cffectivencss of the technigue by modelling a large repairable computing
system. Also, we study the effect of periodic maintenance on systems with components having
increasing and decrcasing faiiure raic. l ‘,: ‘f;" } [
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1. Introduction

The problem of computing dependability measures of repairable systems with general failure,
repair and maintenance processes is a hard problem cither by analviical or by numetical methods,
Such systems, in general, cannot be maodeHed by Markov or even semi-Markov processes TTARP
[ 3] solves large models with general failure time distributions by creating a non-homogencous
Markov chain model of the svstem and then solving the corresponding differential cquations nu-
merically. The technique has been applicd to non-repairable systems only (transient recoveries are
allowed. but they arc approximated by instantancous transitions). Purthermore, only transient
measures {c.g., rcliability) are estimated. CARE-111 [ 1R ] uses numerical integration methods to

solve similar modcls.

The goal of this paper is to madel systems with general failure, repair and maintenance processes,
and solve them for both transient (c.g., reliability and mean time to failure) and stationary (c.g.,
steady-state availability) measurcs. Tn relatively simple cases, one could obtain the Taplace Trans-
form of dependability measures for such models and numerically invert them to obtain the desired
results [ 14 ]. However, these methods are limited 1o small maodels and are prone to unboundable

numerical crrors.

An alternative approach is to use Monte Carlo simulation. The advantage of this method is that
arbitrary system details can be modeled, and furthermore, all the system states need not be gener-
ated. The disadvantage of this approach is that standimnd simulation takes very long time to cstimate
dependability measures with reasonable accuracy because system failure events arc very rare in
highly dependable systems [ 4 1. When the fatlure and repair time distributions are cxponcnt.ial. the

importance sampling technique has been used successfully in the past to reduce simulaticn run-
lengths significantly [ 2, 10, 12 ]. Basically, the system failure events are foreed to occur more often
by increasing the failure rates: unbiased cstimates of dependability measures are obtained by
multiplying the value of the measurc on a sample path by the likclihoed ratio of the sample path.
The likelihood ratio for a given sample path is the ratio of the probability of the sample path under
the original distributions (c.g., with the original failure and repair rates) over the probability of the

same samplec path under the new distributions (c.g., with the new failure and repair rates).

In this paper, we extend the applicability of importance sampling to non-Markovian systems with
general failure, repair and maintenance processes. Ior genceral discrete-event systems, importance
sampling has been discussed in [ 5, 6 ]. Basically. a Generalized Semi-Markov Processes ((GSMPs)

formalism is used to represent such systems, and the likelihoad ratio of a sample path is written in

terms of the various probabilify distributions (c.g . failure, repair and maintenance distributions) in




the original and the new (simulated) systems. However, in [ 5, 6 ] they did not consider the design
and implementation of specific importance sampling distributions that are required in order to ob-
tain effective variance reduction in non-Markovian models of highly dependable systems. One
possiblc way to appropriately implement importance samnpling, which we propose and usc in this
paper, is accomplished by canceling and rescheduling previously scheduled cvents. For example.
when one componcent fails in a system with a redundant component pair, we speed up the failure
of the other component so that it fails with high probability before the repair of the first compo-
nent. This involves cancelling the originally scheduled failure event for the second component and

rescheduling it using a new failurc distribution with a smaller mean time to failure,

In Sections 2 and 3 we give a concise description of discrete-cvent systems, which is appropriate for
our purpose in this paper: namely, to formeily represent the probabiiity of a sample path. ‘This

yiclds a representation for the likelihood ratio which is the key to importance sampling.

In Scction 4, we give the basic estimators for soine comrronly used mceasures in highly dependable
systems, such as reliability, steady-state availability and .ncan time to failure. A simple example
of a two-components system is used to explain thess measures as well as the importance sampling
technique used to cstimate them. In Section 5, we discuss the implementation of these methods in
a software tool which we used to generate and simufate large models. This tool is based on the
CSIM package [ 15. 16 J. In Section 6, we use three examples to illustrate the effectivencss of the
proposcd importance sampling techniques. First, we use a small example to experiment with some
heuristics for sclecting the new probability distributions which make the typically rare system fail-
ures occur more often. Sccond, these heuristics are applicd in a large example to show that orders
of magnitude reduction in variance can be obtained.  We use exponential failure and repair dis-
tributions in this cxample to ascertain the correctness of the results obtained by comparing them
against numcrical results obtainced fiom the SAVE package [ 7 ]. In the third example. we use
Weibull failure distribution and periodic maintenance for all individual components in the system.
We study the effect of the hazard rate (i.c., increasing. decrcasing and constant failure rates) on the
optimal maintenance period. Such studies cannot be performed with existing analytical or numer-

ical methods. In Scction 7 we give conclusions and some directions for future rescarch.

2. Discrete-Event Systems

In this section we give some notation and basic propertics of discretc-event systems, which will
assist in representing the probability of a sample path and the likelihood ratio required for impor-

tance sampling in simulations of such systems. A precise mathematical framework for the study

of discrete-cvent systems is given by Glynn in [ § J: he gives a generalized semi-Markov process




(GSMP) formalism of discrete-cvent systems. Here, we give an alternative concise deseription of
discrete-cvent systems. which is appropriate and sufficient for our purpose. In our deseription we
have left out some of the details and gencralitics which are not needed for the developments in this
paper.

A discrete-cvent system is characterized by a set of events E which can trigger transitions of its state
and a set 7. of intcger-valued output state vectors ( 7. is poseibly a countably infinite sct). With each
cvent ceF. we associate a clock. The reading c{e) is the “remaining lifetime” of clock e. i.c., the time
remaining for clock e to expire. c(¢) = oo if clock e is inactive. ‘The choice of the output (observable
or measured) state vector in a discrete-cvent system depends on the application at hand and the
desired level of detail.

The internal state of a discrete-cvent system at a given time is completely determined by its output
state and the set of active clocks (i c.. the sct of events which can trigger a transition to another
internal state) with the associated clock readings. Upon the i — th transition, let 7,7, be the output
state vector and E,CF. be the sct of active clocks; ¢fF,) is a vector with the associated clock readings.
Then X; = (7. ¢fF)) is the internal state of the discrete-cvent system upon the 7 — th transition.
Notice that the output state and the set of active clocks characterizing the internal state change only
in responsc to transitions (cvents), while the clock readings are continuously changing at the same
rate {in gencral, different clock rates tmay be assumed. see e.g.. [ S ). 1t is typical in discrete-event
systems that the output state does not change between transitions; for example, the number of
customcrs in a qucucing system. ‘Therefore, the output state trajectory of a discrete-cvent system
is completely deseribed by #i:c output state at transition times of the internal state. Tet ;,i2 0, be
the time of the i — th transition, with f, = 0. Then 7; = 1, = # s the time between the i — th and
the (i + 1) — th transitions. 1.et Z(1) denote the output state at time ¢, then {Z(1). 1 2 0) is the output

state trajectory, and Z(0) = Z, il {, St < 8,,.

As indicated above, we only consider the internal state sequence at transition times, since this is
sufficicnt to deteninine the output state trajectory of the discrete-cvent system. A sample path of
the discrete-event system up to the n — th transition is denoted by the sequence X, of intemnal

states at transition times,

X()m = (Xo, X, PRI X,,)

Lot e,‘ = argmin{c(e)}, i 2 0. Then ('; is the clock which triggers the (i + 1) — th transition and
re

T, = cle). The internal state Xip1 = (Zyyy€44(Fy,,)) upon the (i + 1) ~ th transition is deter-

mined hy the sequence Xy ; and may depend on the complete history of the system. The set of

active clocks K, upon the (i + 1) .- th transition is determined by



Eigy = Bimep = A4 Ny i),

where A, is the set of clocks canceled (aborted) upon the (i + 1) — th transition and N, is the set
of ncw clocks activated upon the (i + 1)~ th transition. The sct of clocks A; and Ny, and the
output state Z,,, are determined probabilistically. depending on the trigger event c,' and the sc-
quence Xq . Therefore, the (i + 1) — th transition triggered by e yiclds the output state 7.4y and
the active set of clocks Ey, with a probability denoted by py (7, Ey i e,' ). ‘The subscript i+ |
of p symbolizes the dependence on the sequence X, (routing in queucing networks is an obvious

example for the usc of thesc transition probabilitics).

We denote by f{(t: e) (resp. Fi(t; ¢) ) the probability density function (resp. the complementary dis-
tribution function) of the (conditional) “remaining lifetime” of clock eeFE; at the i — th transition.
The subscript § symbolizes the dependence of this probability density function on the history of the
system through its internal state sequence Xg ;. For example, if clock e was originally scheduled
using a probability density function f{ +; ¢) and if the age of the clock at the i — th transition is a,
then the density of the remaining lifetime ¢ is f(G o) = fit+ a: )T (@ e).  Similarly,
Fitie) = F(t+ a; e)|F(a ). M clock ¢ is newly scheduled at the £ — th tiansition, then the age is
0, o that fi(t;e) = fit;e) and T(t; ) = F(t;e) . Tt Oy, be the set of old clocks which continue
to be active upon the (/ + 1) — th transition, ie., Oy, = E; =Ny, i20. The clock reading
c(e), eQ),,,, is updated as follows: c(e) = c(e) — 7). Upan the (i + 1) — th transition, the proba-
bility. density function and the complementary distribution function of the remaining time on clock

eeO,,,; arc changed to refiect the clapsed time on this clock, i.c., for all eeOyy,

Jip(tie) = flt+ 7y r)lf,( 1he0), @.n
Fep(tie) = B+ 1:0)T(Ti o). (22

Notice that these modified distributions are not nceded to determine the clock readings
o(e), eeQ,,,, since, as stated above, we can use the remaining lifetime as the updated clock reading
for an old clock. However, they are used to describe the probability of a sample path and the

likclihood ratio, as we shall see in the following.

Given that the internal state of the discrete-event system is X, at the § ~ th transition, we can write
the probability density (likclihood) that the next internal state is X, at the (i 4 1) — th transition.
We denote this probability by P(X;,.,) , then




PXpia) = S5 €) i@, By H (T 0). (2.3

e, ~fe)

It follows that the likelihood of a sample path X, ., up to the n—th transition, is given by

n-—-l
PXon) = [ | ATe ) i@ B |1 Fittie. 2.4)

I=0 eeF, ~ie))

3. Importance Sampling in Simulations of Discrete-Event Systems

In this section. we discuss importance sampling which can be used to obtain a sgnificant variance
reduction over standard simulation when estimating dependability mcasures. The basic idea of
importance sampling is to simulate the system under different probability disinbutons, so as to
appropriately and quickly move the system towards failure. Since the simulated system is dynam-
ically different from the original system, a correction factor is needed to compensate for the resulting
bias. This correction factor is called the likelihood ratio and must be used with importance sampling

to obtain unbiascd estimatesr.

Consider a simulation of a discrete-cvent system for the purpose of estimating the expected value
of a particular performance measurc, say M. Lot M(X, ») be the value of the measurc on a sample
path X, » , where N is a stopping time relative to the internal state sequence, ic., N = /) isa
function of Xq; (/(+) is the indicator function which cquals onc if its argument is truc; otherwise
it equals 7cro). In the original system, the likclihood of the sample path X, v is P( X v ) as given
by Fquation (2.4). To implement importance sampling, we simulate the system with a different

likelihood P'( ) for its sample path. For P'( ), it is necessary that the following must hold for all

Xo.n

P'(Xo 4 > 0 whenever M(Xq y) P(Xqn) > 0. 3.1

Under P(«), the expectation Ep(M) can be expressed as follows

Ep(M) = ) M(Xo0) PiXo0)
¥Xon

= ) M(Xo ) L(Xo, ) P'Xo p) (3:2)

VXQ_N

= EpiM L),




where En(M1) is the expectation of Af/. under P'(e). The likelihood ratio
L(Xyn) = P(Xo MIP'(Xqa) is the ratio of the sample path likelihoods under the origin:l and the
new distributions, P and P’ , respectively. The usc of the sumration sign in the above equation is
not quitc precisc, since the sample space is uncountable infinite, however, the summation can be
interpreted as an integral with respect to an apprepriate probability measure to make this fully rig-

orous,

Let f{tie), F'(1; e), eeE and p', et By ¢ ) be the probability distributions, in the simulated
system, corresponding to f(t e), T(t; e), ceE and p (Z,,,, Enp e,' ) in the original system. These
distributions should be chosen appropriately, so as to favorably bias the dynamics of the system
while making surc that the condition in Fquation (3.1) is satisficd. ‘1 he rules for updating the new
quantilies, ' +; €) and I+ ; ¢), at transition times arc analogous to those for updating f( « ; ¢) and
f,( ¢, ¢) given in Equations (2.1) and (2.2). The likelihood ratio associated with the sample path Xon

is given by

N—- . 8 N ¢ Ty
Xy ) = l‘i LTie)  PuiZiyy Eyiia) I(Tje) (3.3
' w0 SATEe) P @agy Frpri ) rek,— e} F'(Tie)

The abovc equation is the basis for importance sampling in discrete-event systems. Rather than
replicating the r.v. M ( X, y ) under P to estimate Ep(M), we replicate the r.v. M(Xo.n) L(Xo,n)
under P’ to estimate Fp.(M L), which is equal to I;,(AM). When P’ is chosen appropriatcly, signif-
icant reduction in the variance of the r.v. M ., under I, can be achicved (compared to the variance
of the r.v. M under P). This choice depends on the model at hand and on the mcasure to be esti-
mated.

Notice that Equation (3.3) allows us to update the likclihood .atio at transition times in simple
multiplicative manner. Notice also that at any transition we can actually change the values of any
active (old and new) clock according to some choscn, essentially arbitrary, new distribution. This
is equivalent to cancelling an active clock and rescheduling (i.c., resampling) its remaining lifetime
from the new distribution. We illustrate this by the following: Suppose that clock e is activated at
the i— th transitior. and that we assign a value to this clock according to the probability density
function f{«; e} . At the (i + 1) ~ th transition, we decide to reschedule clock e, thus we assign to
its remaining lifetime a new value §' according to a new probability density function f'(«;e) .
Further, we supposc that clock e continues to run at the (i + 2) — th transition and it expires at the
(i + 3) — th transition. In effect, clock e has a total lifetime 7;+ y’. According to quation (3.3),

the contribution of clock ¢ to the likelihood ratio at the (7 + 1) — th transition i<




F{Tie) I'(l:e)
F(Tze F(lie)

Using Equations (2.1) and (2.2), the contribution at the (i + 2) — th transition is

FiTuse . F(I,+ T olF (T e)
F'iof(Tygi€) F{Tiari @) .

Using Fquations (2.1) and (2.2), the contribution at the (i + 3) — th transition is

jl‘+2(Tl+2; e) - AT+ ")/F(Tl + T(+|3 e)
LuadTingio) LU (Tyie)

It follows that the overall contribution of clock e 1o the likclihood ratio between the i — th and the

(i + 3) — th transitions is

AT+ )50
FTiere:e)

In the above equation, noticc that the numerator i simply the likelihood of the total lifetime
(T;+ ') of clock e under the original probability density function f{ « ; e), while the denominator
is the likelihood with rescheduling.

Az an example to show hew importance sampling can be implemented, let us consider a machine-
repairman model with two componcents of the same type and one single server FCFS repair fagcility.
Each component has general failure and repair distributions. The system is initially operational,
with all componcnts as good as new, and it continues to be operational as long as at least one
component is operational. In a highly dependable system, a component’s mean time to failure is
usually several orders of magnitude larger than its mean time to repair. Thercfore, a system failure
is a rare event. Consider the estimation of a dependability measure, such as the unreliability, using
the replication mecthod of simulation. Clearly, if we usc standard simulation, a very large number
of replications is needed to achicve a reasonably tight confidence interval. This implies a very long
simulation run. Importance sampling is accomplished by biasing the dynamics of the system so
as to make its typical failures occur more frequently. One possible heuristic is what we call dynamic
importance sampling (DIS) { 2, 10 J; it is described as follows: as soon as one of the two com-
ponents fail, we accelerate the failure of the second component, either by rescheduling it using a
new (accclerated) distribution or by increasing its clock rate.  Increasing the failure clock rate is

equivalent to rescheduling with o new distribution obtained by scaling the conditional original dis-

7




tribution. A reasonable heuristic choice for 1he new distribution is obtained by appropriately scal-
ing the original distribution, such that the new failure “rate” is of the same order of magnitude as
the repair “rate” [ 2 ]. By rescheduling the failure of the sccond component, we arc also increasing
the probability of a system failure (i.c.. both components unoperational). If the second component
fails while the first is in repair. we have a system failure (this is a stopping time for a replication
when cstimating the unrcliability). If the first componcnt is repaired before the second component
fails, both components become operational and we must reschedule their failures using the original
distributions. This is crucial in order to appropriately move the system only towards a likely path

to failure.

4. Dependability Measures

In this scction we discuss the estimation of some measurcs which are commonly used for the eval-
uation of highly dependable systems. These measures can be classified as stationary or transient.
Stationary measurcs are determined by the long-run (or steady-state) behavior in repairable systems;
they are independent of the initial statc. The steady-state availability is a common stationary
mcasurc. ‘Transicnt measures are determined by the transient behavior in repairable and non-
repairable systems; they depend on the initial state. It is usually assumed that the system starts with
all its components fully operational. The system reliability and the mean time to failure (MTTF)
arc common transient measures which we consider in this section. Instantancous availability, dis-
tribution and expectation of interval availability are cxamples of other transient mceasures: the esti-

mation of these mcasurcs in Markovian models is considered in [ 10 ].

As a running example, we will consider the machinc-repairman model (described in Section 3) to
explain our idcas and to numerically illustrate the effcctiveness of importance sampling for the es-

timation of dependability measures.

4.1. System Reliability

In this section we consider the cstimation of reiiability in non-Markovian discretc-event systems
using simulation and importance sampling. No assumptions are made concerning the distributions
of time to failure and time to repair of individual system components. The system is initially in a
state with all its components operational and as good as new. Let Ty be the time at which the
system first enters a failure statc. The system reliability R(f) is defined as the probability that the

system docs not fail in the interval (0, 2), L.e.,

Ry = P(7p > 1) = B(I(TF > 1), “4.n




where /( +) is the indicator function. ‘The method of replications is the typical simulation method
for estimating the reliability. In cach replication we simulate the system until cither a failure occurs
or the time interval exceeds 1. et 1, be the number of replications. The resulting estimate for the

unreliability U(() is given by

Oy = 1 - R(t) = -,}-'- NUTLY 4.2)
im)

where T is the time to failure at the i — th replication and /(T < 1) is the valuc of the indicator
function. Clearly, if we use standard simulation in a highly rcliable system, then the value of the
indicator function is zero in all but a few replications. A very large number of replications (i.e., a
very long simulation) is needed in order to obtain an cstimate with a tight confidence interval. Im-
portance sampling. as described in Section 3, is very cffective in improving the efficiency of such
simulations. Let N, be the stopping time in the i — th replication, i.c., the number of internal state
transitions until either a systemn failuce or the first transition to occur after time ¢. The resulting es-

timate is unbiased and is given by

n,

A

0y = o 2107, S 0 Lo, x). 43)
I

where 1.(Xg, x) is the likelihood ratio as given by Fquation (3.3).

It is important to mention that forcing [ 12 ] can be combined with failure biasing (described in
Section 3) to estimatce reliability. T+ is particularly uscful when ¢ is small so that a failure is un-
likely to occur in the interval (0, ¢). In the machinc-repairman model of Section 3, forcing is ac-
complished by scheduling component failures using the original distribution conditioned so that a
failure is guaranteed to cccur before time 1. Once a failure occurs, the sccond component is re-
scheduled using an accelerated distribution. In cach replication, forcing should be done every time

both components become operational.

In Markovian models, conditioning out the holding time in the initial (fully operational) state [ 10
1 has also proven quite effective in improving the cfficiency of simulations to estimate transient

mecasures. However, extending this technique to systems with general failure time distributions is
difficuit.

To illustrate the feasibility and effectivencss of importance sampling (with rescheduling) to estimate
system reliability, we consider the machine-repairman example (of Section 3) with a two-stage

hyperexponential failure and repair distributions. A two-stage hyperexponential failure time is

9




generated from an exponential of paramcter 2, with, a probability g, and from an exponential of
parameter A, with a probability 1-¢, The parameters of the failure distribution are
qr = 9,4 = .001 per hour and 2, = .01 per hour. Wc have selected relatively high failure rates
so that tandard simulation could provide us with rcasonable cstimates for the purpose of com-
parison. The parameters of the repair distribution are g, = 9,4, = 1 per hour and i = 10 per
hour. For importance sampling, we v<e 2u accelerated failurc distribution which is the same as the
original distribution wiih its rates scaled up (while other choices are also possible, determining the
optimal is an open reszarch problem). The paramcters of the accelerated failure distribution are

9y = 9,4, = 5perhourand 2y = 5 per hour.

For the interval between () and 10 hours, a very accurate cstimate of the unreliability U(10) is ob-
tained numerically using the SAVE package [ 8 ]. For the purpose of comparison, we have also
used standard simulation as well as importance sampling, each for a total of 128000 simulated
events. ‘The numenical and simulation estimates arc as follows (with the 90% half-width confidence
interval as a percentage of the point cstimate):

Numerical: 5.775 x 103

Standard simulation: 4.737 x 107° + 94.98%

Importance sampling: 5.560 x 107° + 7.89%

Noticc that by using importance sampling we get more than 10 times improvement in the confi-

dence interval, which is equivalent to more than 100 times reduction in the simulation run-length.

4.2. Steady-State Availability

The steady-state availability is dcfined as the long-run fraction of time the systcm is available. It is
typically used as a metric for evaluating repairable systems. In Markovian models, regencrative
simulations are typically used to estimate the stcady-state availability [ 2 J (the state in which all
components of the systcm are operational is usually chosen as a regencration point). As a conse-
quence, a simplc estimator for the steady-state unavailability {/4 follows from a basic result of re-

newa! theory [ 1]
UA = <= (4.4)

where D and T are the total “down” time and the total “cycle” time between regenerations, re-

spectively.

Unfortunately, in non-Markovian models with general failure and repair distributions, a regenera-

tive structure may not be present (for conditions under which a discrete-event system or a GSMP

10




is regenerative the reader is referred to [ 11 ]). Let us again consider the machine-repairman model
with general failure and repair distributions. We consider two cases in which a regencrative structure
can be recognized. In the first casc, we assume that the failure time of individual components is
exponentially distributed. Thereforc, a regeneration point is readily identificd at repair transitions
after which all components become operational. In the sccond case, regencrations occur as a result
of a periodic (and deterministic) maintenance on all components. This is true for general failure
and repair distributions, since after maintenance a component is as good as new. In this case, a
regencration point is identified at the lowest common multiple of all maintenance periods, provided
that no component has failed since its last maintenance. At these points, all components are op-
crational and the conditional distribution of the time to failure of each individual component is the

same for all regenerations and is conditionally independent of the past.

If a regencrative structure can be recognized in a discrete-cvent system, then regenerative simulation
can be used to estimatc the stcady-state unavailability by using quation (4.4). 1 et n, be the num-

ber of regencration cycles used. Then an estimate of (/4 is given by

5 0§
Vg =2 o — &= (4.5)
T l . \
ra ;7'

where /), and 7 arc the total "down” time and the “cvcle” time in the i — th regeneration cycle, re-
spectively. D and T arc estimates of E(D) and F(7), respectively.  For highly available systems,
system failure is a rarc event. Therefore, standard simulation is very inefficient for estimating the
numerator E(D), since only a very small fraction of regencration cycles will contain failurcs. Again,
importance sampling provides an efficient solution by biasing the dynamics of the system appro-
priately, so that a likely path to failure is encountered more often. Notice that the denominator can
be estimated efficiently using standard simulation; in fact, using importance sampling to estimate
the denominator E(7) may increase its variance. ‘Therefore, a better estimate for the steady-state
unavailability can be obtained by using measure specific dynamic importance sampling (MSDIS)
(93
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) 408 SV IAIWAL YYTW WULMASALAL v LAV ~ LAYy ‘v’ A

1g as described in Section
3, while independenttly using standard simulation o estimate the denominator E(7). The optimal
allocation of the simulation run lengths for estimating the numerator and the denominator is con-
sidered in [ 10 ]. Notice that here, regeneration times are used as stopping times. Let n, end ny
be the number of regeneration cycles ured 10 estimate the numerator and denominator, respectively.

For the numerator, estimates for the mean and the variance are given by
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where at the i — th replication, D; is the value of the numerator and N, is the stopping time.
L(Xo, n) is the associated likelihood ratio as computed from Equation (3.3). Similar equations hold
for the mean and the variance of the denominator, ’;' and 32(7). respectively, except here the like-
lihood ratio is identical to one (since we are using standard simulation). It follows that U4 has the

following estimates for its mean and asymptotic variance [ 10 ] (for large n, and ny ):
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with § = n,/(n, + ny).

Let us again consider the machine-repairman example in Section 4.1 to illustrate the effectiveness
of importance sampling to estimatc the steady-state unavailability. We change the failure time dis-
tribution 1o an exponential of a parameter 4 = .001 per hour; this is donc 1o obtain a regenerative
system for which we can use a regencrative simulation. FFor importance sampling, we usc accelerated

failures from an exponential distiibution of a parameter 2’ = .5 per hour.

An accurate estimate of the unavailability /4 is obtained numerically using the SAVL package [
8 J. We give estimates using standard simulation and importance sampling, cach for a total of
128000 simulated events. The results are as follows (with the 90% half-width confidence interval
as a percentage of the point estimate):

Numerical: 1.799 x 107

Standard simulation: 1.623 x 107° + 29.70%

Importance sampling: 1.:17 x 1076 + 2.61%

N 4% H I
8 thwes improvement in th

sampling. In Section 6 we present experimentation results for estimating the steady-state unavail-
ability in a machine-repairman model with periodic maintenance and in a large model of a com-
puting system. For snme experiments, we select typical failure rates in the range of 1075 10 1075,

In this range, standard simulation produces meaningless results, while the estimates obtained using

importance sampling converge as quickly as those in the ahove cxample.
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4.3. Mean Time to Failure (MTTF)

MTTL is typically thought of as a transicnt measure, since it depends on the initial state of the
system. Assuming that the system is initially in a statc with all its componcnts operational and as
good as new, thc MTTT is defincd as the expected tiine the system first enters a failure state. The
replication method of simulation is typically used to cstimate the MTTF. Again, standard simu-
lation of highly dependable systems means very long replications and, hence, excessively long sim-
ulation ruas. When the replication method of simulation is used, importance sampling may
actually increase the variance of the MTTF estimate; this is because a likely sample path to failure
in the biased system is, roughly, much shorter (in terms of simulated time) than a likely sample path

in the original system.

If the initial state of the system is a regeneration point, then a ratio represcntation for the MTTT

is possible [ 17 ],

E(r)

MTTF = S35 -

4.8)

where 1 (= min(Tp, 7)) is the minimum of the time to system failure (77) and the cycle time
(). P(Tr< T) is the probability that a system failure occurs before a regeneration. In the above
1atio representation, both the numerator and the denominator can be estimated using regenerative
simulations. The numerator E(r) can be estimated cfficicntly using standard simulation. llowever,
in highly dependable systems, the denominator (7 < 7) is a very small quantity; hence, it can
be estimated much morc cfficiently using importance sampling. Ilere also, MSDIS is recommended
for estimating the MTTT, in which the numerator and the denominator are simulated independ-

ently.

Unfortunately, a regenerative structure may not be exhibited in a general discrete-event system; this
limits the validity of the ratio representation for the MTTT, and hence the usc of importance

sampling, to only those systems in which the initial state is a regeneration point.

I ot us again consider the machine-repairman model with general failure and repair distributions.
In Section 4.2 we have recognized two cases in which the system exhibits a regenerative structure.
In particular, if the time to failure of individual components is exponentially distributed, then the
initial state, with all components operational, is a regeneration point. In this casc, the ratio repre-

sentation of the MTTF is valid and importance sampling can be used to estimate P(Tx< 7).

Again, the heuristic for importance sampling is as described in Section 3, except that here, the

stopping time is either the regencration time or the time 1o system failure, whiches er occurs first.
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let ny be the number of cycles used. and .V, be the stopping time in the i — th regeneration cycle.

The resulting estimate PAF,‘ of P(Tr < T) is given by

ny4

)] 1 .
PFL = n_d Z I(TF, < 7‘) I«(XO' N') ¥ (4.9)
=)

where Ty <T) and L(X,, w) are the indicator function and the likclihood ratio (from Equation
(3.3)), respectively, evaluated in the i — th regencration cycle. The estimate T of E(r) is obtained
independently using standard simulation. The resulting estimates for the mean and variance of the
MTTF are computed from equations similar to Equations (4.6) and (4.7) for the steady-state una-
vailability UA4.

tere also we consider the machine-repairman example in Section 4.2 to illustrate the effectiveness
of importance sampling to estimatc the MTT'F. Noticc that the failure time distribution is assumed
to be exponential with a parameter 2 = .001 per hour. We obtain a regenerative system for which
the ratio represcntation is valid; thus we can use regencrative simulation and importance sampling.

Again, we use accclerated failures from an exponential distribution of a parameter 2° = .5 per hour.

An accurate estimate of the M'T'I'F is obtained numerically using the SAVI: package [ 8 ]. In the
following we also give estimates using standard simulation and importance sampling, cach for a
total of 128000 simulated events (with the 90% half-width confidence interval as a percentage of
the point estimate):

Numerical: 5.510 x 10°

Standard simulation: 6.039 x 10° + 22.60%

Importance sampling: 5.450 x 10° + 1.96%

We obtain more than 10 times improvement in the confidence interval by using importance sam-

pling.

5. Implementation Issues

In this section we consider the implementation of the vanance reduction techniques described in
the previous sections. We have implemented these techniques using CSIM [15,16], which is a
process-oriented simulation language based on the C programming language. In a process-oriented
simulation, a model is defined as a collection of interacting processes. Each process is an inde-
pendent program which runs in parallel with the other processes, with a main program synchro-
nizing all of the processes and controlling the interactions between them. For cxample, in the

reliability system simulations which we consider here. a separate process is created for cach indi-
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vidual componcat of the system. Lach process simulates the failures and repairs of its respective
component. In our models solved with CSIM, we only consider steady state unavailabiiity, which

wc estimate using regencrative simulation.

We definc an up cpcle to be a segment of the sample path between two successive times when a
component comes out of repair or scheduled maintenance and finds all other components opera-

tional. As we will see later, therc may be more than one up cycle in a regenerative cycle.

In models of highly reliable systems, the repair rates of the components are typically orders of
magnitude larger than the failure rates. A method of implementing importance sampling is to re-

schedule events in order to bias the system towards the failed state. This is called failure biasing.

When using importance sampling, we want to cause the system to fail using the most likely path
to failure. This suggests using the following strategy for implementing failure biasing. After the first
componcent failure in an up cycle, we reschedule all of the other components’ failure times by gen-
crating new remaining lifetimes using specificd biascd distributions. The biased distributions are
selected so that the probability that some operating component fails before the component in repair
completes service is in the range of .1 to .5, thus greatly increasing the probability of a system fail-
ure. Until either a system failurc occurs or we reach the end of an up cycle, we continue to schedule
all failure lifetimes using the biascd failure distributions. Once we reach the end of an up cycle,
we reschedule the remaining lifetimes of all components using the original failure distributions and
repeat the entire process. However, if we reach the failed state during the time failure biasing is
activated, we immediatcly reschedule all of the remaining lifetimes of the operational components
using the original failure distributions and do not usc failurc biasing for the rest of the regenerative
cycle. By doing this, we ensure that the probability of two system failures occurring in one regen-
erative cycle remains small. For continuous time Markov chains the discrete time conversion of

the above strategy was shown to be an effective technique in [2, 9].

As an alternate approach to rescheduling failures, onc can actually alter the rates at which the clocks
associated with the lifetimes of the components advance. In order to implement importance sam-
pling in a manner similar to rescheduling, we rescale, i.c., divide by a scaling factor r, the remaining
lifetimes of the operational componcnts at preciscly the same instances at which clocks were re-
scheduled when using the rescheduling technique  The advantage of rescaling clocks is that new
random lifetimes do not have to be generated. In our implementation, we actually altered the repair
clock rate instead of altering all of the failure clock rates. Since we are assuming that there is only
one repairman, this allows us to reschedule only one event, hence saving computational effort. In
order 1o avoid numerical problems with the likelihood ratio, we pretended that we actually changed

the failurc clock rates and did nothing to the repair clock rate. The resulting likelihood ratio is
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cxactly the same as in the rescheduling case when using scaled conditional distributions for the bi-

ascd distributions.

In the experimental results discussed below, the rescaling technique was used to implement im-
portance sampling in all of the models except for the maintenance model, in which rescheduling
was used. It should be noted that the amouvnt of CPU time nceded to simulate a fixed number of
events using importance sampling took an extra 10% to 150% over standard simulation, depending
on the size of the model solved and the importance sampling implementation used. [lowever, the
extra computation time needed is due to special “tricks” we had to use in CSIM in order to adjust
the cvent list of the simulator, and in a different implementation where we are able to directly access
the cvent list, there would be minimal extra cost. This observation is supported by experiments in

[ 10 J when using importance sampling for simulating Markovian models.

6. Examples and Discussions

In this section we use three examples to iljustrate the effectiveness of the proposed importance
sampling techniques. First, we use a small example to experiment with some heuristics for selecting
the new probability distributions which make the typically rare system failures occur more often.
Second, these heunistics are applied to a model of a fairly complex computing system to demon-
strate that the methods described in this paper are effcctive and that orders of magnitude reduction
in variance can be obtained in simulations of large models. We also show that the relative accuracy
of our estimate of unavailability when using our importance sampling techniquc is independent of
the magnitude of the unavailability. We use exponential failure and repair distributions in this ex-
ample to ascertain the correctness of the results obtained by comparing them against numerical re-
sults obtaincd from the SAVE package [ 7 ). In the third example, we use Weibull failure
distribution and periodic maintenance for all individual components in the system. We study the
effect of the hazard rate (i.c., incrcasing, decreasing and constant failure rates) on the optimal
maintenance period. Such studies cannot be performed with existing analytical or numerical

methods.

6.1. Effects of Different Biased Failure Distributions

In this section, we usc a small model to analyze the behavior of the variance when using our im-
portarice sampling technique. In particular, we examine the effect on the stability and magnitude
of the estimated variance from how much we bias the system towards failure when using impor-

tance sampling.




‘The model consists of two tynes of components, each having a redundancy of two. The failure
distributions of the components arc exponential, with the failure rate denoted by 2 There is onc
repairman, who services failed components in a FCES fashion, with repair times being exponen-

tially distnbuted and repair rate ;1 = 1.

We now examine the effect on the amount of variance reduction gained and the stability of the
variance by choosing different scaling factors r. Table | contains the values of the variance of the
amounti of down time in a regencrative cycle after a specified number of simulated events for various
values of r when 4 = 10~°, and Table 2 contains similar results when 2 = 107>, If the probability
of system failure is small, then the variance of the down time is the dominating term in the ex-
pression for the variance of steady state unavailability when estimated as a ratio (see Equation
(4.7)). By choosing the scaling factor » such that u/10 < r(n — 1)A € u, where n is the total number
of components in the system, we obtain stable estimates of the vanance quickly. Also, for 7 in this
range, we obtain the largest amount of variance reduction. It is also interesting to point out that
if we choose r too large, the variance actually starts to increase and becomes less stable. The in-
creasc is caused by the added vanability in the likelihood ratio. The above experiment was a useful

guide in sclecting the scaling factor for larger modcls.

6.2. A Large Model

In this section, we provide empirical resulis from a large madel, showing that the methods described
in this paper are also feasible and effective for larger systems than the ones described above. Also,
we demonstrate that the relative size of the confidence intervals when using importance sampling
is independent of the magnitude of the unavailability of the system, as long as a system failure is
still a rarc event. The system we will examine is based on a model of a fairly complex computing
system (also considered in [ 13 J), with its block diagram shown in Figurc 1. The computing sys-
tem is composed of two sets of processors with 2 processors per set, two sets of controllers with 2
controllers per sct, and 6 clusters of disks, each consisting of 4 disk units. In a disk cluster, data is
replicated so that one disk can fail without affecting the system. The “primary” data on a disk is
replicated such that one third is on each of the other three disks in the same cluster. Thus, one disk
in each cluster can be inaccessible without losing access to the data. The connectivity of the system
is shown in Figure 1. All failurc time distributions and repair time distributions are exponential.
We examine the mode] undes two different sets of failure rates in order to show that the relative
width of the confidence interval is insensitive to the magnitude of the unavailability. In the first set,
the failure rates of processors, controllers and disks are assumed to be 1/2000, 1/2000 and 1/6000

per hour, respectively. These rates are much larger than onc typically would find in the real world,




but we chose these values so that we could obtain stable estimates of both the unavailability and
its variance using standard simulation in a reasonable amount of time. In the sccond sct, we divide
all of the failure rates by 100, thus creating more realistic failure rates and causing the unavailability
to be even smaller. The repair rates for all components is | per hour. Components are repaired
by a singls repairman who repairs the components in a FCFS discipline. The system is defined to
be operational if all data is accessible to both processor types, which means that at least onc
processor of each type, one controller int each set, and 3 out of 4 disk units in each of the 6 disk
clusters are operational. We also assume that operational components continue to fail at the given

rates when the system is failed.

Since all failure and repair time distributions are exponential, the resulting system is a continuous
time Markov chain. We designed the system in this manner so that we could obtain numerical
(non-simulation) results for the unavailability using the SAVE package [ 7, 8 J. Since the system
has a few hundred thousand states, only bounds could be computed [13]). These bounds are very

tight and typically do not differ from the cxact results significantly.

In Table 3, we have the estimates of unavailability and their 90% confidence intervals for the dif-
ferent scts of failure rates when using standard simulation and itnportance sampling after 1,024,000
simulatcd events. When using importance sampling, the scaling factor r was selected in a manner
analogous to the results from the small model example given in Section 6.1. The first row of the
table contains the results from using the first set of failurc ratcs. The width of the confidence in-
terval is reduced by a factor of 3 6 by using importancc sampling over standard simulation, which
translates into a 13-fold improvement in run length. The results from using the second set of failure
rates are given in the secor:d row of the table. The results from standard simulation are meaningless
because the variance had not yet stabilized by the end of the simulation. However, the results from
using importance sampling are quitc accurate, with the size of the relative 90% confidence interval
being the same as that with the first set of failure ratcs when using importance sampling.  Thus,
our importance sampling technique is relatively independent of the magnitude of unavailability, and
as the occurrence of a system failure becomes rarer, the amount of improvement gained by using
our importance sampling technique over standard simulation increases, which is a favorable con-

clusion.

6.3. A Study of Effects of Maintenance Policies

We now demonstrate the types of studies that can be made with the aid of the importance sampling
schemes described in this paper. We examine a non-Markovian model with scheduied periodic

(deterministic) maintenances and determine the eflect of varving the length of time between main-




tenances when component lifetime distributions have increasing failure rate (1I'R), constant failure
rate, and dccreasing failure rate (DI'R).  Because of the complexity of the model, analytic results
arc extremcly difficult to obtain. Also, as we will see, since system failures occur very rarely,

standard simulation is very inefficient, and importance sampling is the only practical altcrnative.

We consider a simple maintenance model consisting of one type of component with a redundancy
of two. The distribution of the lifetime of each component is Weibull, with shape parameter a and
scale parameter f. Recall that if « = 1, the component lifetime distributions are cxponential. Also,
if « > 1, the distribution has an increasing failure (hazard) rate, and we have a decreasing failure rate
distribution if « < 1. In our experiments, we fixed f# = 10~> and varied «. There is one repairman
who fixes failed components in FCFS fashion. ‘The length of the repair times is the sum of a
constant ¢ plus an exponentially distributed random quantity with rate ;2. The constant ¢ corre-
sponds to the travel time of the repair man. In all of our simulations, ¢ was 2.0 hours and the repair
rate u was 0.5 per hour. In addition, cach component has a periodic scheduled maintenance every
d hours, where d is deterministic. One component has its first scheduled maintenance at the be-
ginning of the simulation, and the other component has its first scheduled maintenance after d/f2
iimulated hours have passed. Thus, the maintenance cycles of the two components are staggered.
All scheduled maintenances take 0.5 hours. Also, after a component comes out of repair from a
failure. the next scheduled maintenance is skipped, and a maintenance is performed on a component
only if the other component is operational. A component is considered to be as good as new im-
mediately after completing a scheduled maintenance. There is a single repairman, different from the
one who rerairs failed components, who performs scheduled maintenances. The system is consid-
ered operational if at least onc component is operational, i.c., not failed or in scheduled mainte-

nance.

Figure 2 shows a plot of the unavailability versus the time between maintenances (d) for the dif-
ferent values of a. The graph was constructed by running simulations using the diffcrent parameter
values, plotting the point estimates, and using lincar interpolation between the points. We ran all
the experiments long enough so that the relative half-width of the 90% confidence interval was less
than 10%. It is interesting to note how smooth the curves are for each of the value of «, thus
demonstrating the effectiveness of our importance sampling technique. Also note that as d - co,
the system becomes equivalent io one without scheduled, periodic maintenances. This is demon-

strated by observing that the curve for a = 1.0 is beginning to flatten out for 4 > 1000.

The curves show that when component lifetimes have exponential or DFR distributions, perform-
ing scheduled maintenances actually increases the unavailability of the system. When o = 1.0, the

component lifetime distributions have constant fuilure rate, which means that the conditional dis-
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tribution of a failure given that it is greater than 1 docs not depend on ¢ Thus, a component’s reli-

ability does not improve by performing a maintenance on it Actually, performing scheduled

maintenances increases the system’s unavailability, which can be explained as follows Since a |

scheduled maintenance for a component takes a detenninistic amount of time, the conditional
probability of the other componcnt failing during the maintenance time given that it has lived, say
s units of time already, is thc same for all values of s Thus, by decreasing the time between main-
tenances, we are increasing the frequency with which the system can fail by having a maintenance
and then a failurc occurring. This, in turn, leads to the higher unavailability. We sce similar results
when « = 0.75. However, since the component lifetimes now have DFR distributions, the effect is
more pronounced. This is because the conditional probability that a component fails given that it
has alrcady lived ¢ units of time is a decrcasing function of ¢. Hence, by decrcasing the time between
scheduled maintenances, we not only increase the frequency with which the system can fail by
having onc component in maintcnance and the other failing during the maintenance, but also the
conditional probability of the operational component failing during the maintenance of the other
component also incrcases. Thus, one should not perform scheduled maintenances on systems of
components with DFR distributions. When a = 1.25, the components have [FR lifetime distrib-
utions. In this case, the unavailability is large for small values of 4, attains its minimum around
d = 500, and then increases. When « = 1.5, the unavailability behaves in a similar manner, with its
minimum being attained around d = 100. Hence, in a maintainable system composcd of compo-
nents having IFR lifetime distributinns, scheduled maintenances should be performed more fre-

quently at higher c~mnponent failure rates.

7. Summary

In this paper we have described an approach for simulating models of highly dependable systems
with general failure and repair time distributinns. ‘The approach combines importance sampling
with cvent rescheduling in order to obtain varance reduction in such rare event simulations. The
approach is general in nature and allows us to effectively simulate a variety of features commonly
arising in dependability modeling. For example, in this paper we have shown how the technique
can be appiied iv sysiems wiih periodic mainicnance, We have eaplored how ihic sieady-siate
availability is affected by the maintenance period and by different failure time distributions.

We described some of the trade-offs involved in the design of specific rescheduling rules, and dem-
onstrated their potential effectiveness in simulations of systems with both exponential, and non-

exponential failure and repair time distributions. We found that an effective method for selecting

the rescheduling distribution is by making the probability of a failure transition in the range from



0.1 to 0.5. In addition, we used a rescaling of clock vaiucs as an inexpensive way to implement
rescheduling. While this can be cflective when the clocks have nearly constant hazard rates, different
rescheduling algorithms may be required when the clock densities are more general.  The use of
importance sampling for estimating steady-state availability and MTTT requircs that the un.dcrlying
modcl of the system has a regenerative structure. This requires either exponential failure distrib-
utions or general failure distributions with periodic (deterministic) maintenance. On the other hand,
the use of importance sampling for cstimating transient measures, such as reliability, is coinpletely

general and does not! require any assumption on the failure and the repair processes.

We arc currently in the process of implementing importance sampling for estimating reliability,
MTTYF and interval availability in large models (here, we have only experimented with the esti-
mation of these measures in small models). We are also working on the problem of estimating the

gradient of dependability measures in non-Markovian models using importance sampling.
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Events | r =10 | r=10 r=3.3x 107 r= 10" r=10" |
1000 | 5419 x 10~ | 1.764 x 10=° | 1.745 x 10-° | 3.218 x 10-5 | 3.617 x 10-°
4000 || 2.335 x 10=* | 2.654 x 10=% | 1.643 x 10~ | 1.318 x 10~° | 1,845 x 10~®
16000 || 2.138 x 10~" | 2.877 x 10=5 | 1.466 x 10~° | 2,380 x 10~° | 1.608 x 10~*
32000 || 2,114 x10-% | 2.888 x 10~° { 1.600 x 10~° | 7.072 x 10" | 1.388 x 10~
64000 |f 2.093 x 10~" | 2.896 x 10=> | 1.579 x 10> | 1.189 x 10~* | 1.288 x 10~
96000 | 2,094 x 10~* | 2.708 x 10=5 | 1.855 x 10=% | 9.191 x 10~ | 2.938 x 10~!
128000 || 2.032 x 10~ | 2.840 x 10~% | 1.935 x 10-% | 7.876 x 10~° | 2.212 x 10~

lable 1: Fstimated variance of down time in a cyele for 9-state madel (A = 107Y)
using different scaling factors r

[Ewens [ r=10_ | r=10" | r=t" | r=10" r=34x 10" [ r=10°
1000 || N/A N/A 5.232 x 10-0 | 1.772x 10-° | 1767 x 107 | 2.971 x 10~°
4000 N/A 3.557 x 10°F T 1463 x 10°F T 2.750 x 10°7 [ 1.677 x 107 | 1.513 x 107
16000 N/A 1.528 x 10=7 ] 2.020 x 10~-F [ 2.668 x 10-7 | 2.391 x 10-" [ 2.112 x 10~°
32000 N/A 1.987 x 10~7 | 1.887 x 10~* | 2.829 x 10-% [ 3.071 x 10-7 [ 7.025 x 10=*
61000 || 9.168 x 10~" | 2.107 x 10~ | 1.918 x 10~* [ 2,008 x 10~7 | 2.106 x 10=" | 5.537 x 10~°
96000 || 6.647 x 107° | 2,088 x 10~7 | 1.914 x 10-8 [ 2,729 x 10~7 | 2,299 x 10-" | 4.936 x 10~*
128000 || 1.986 x 10~ | 1.816 x 107 | 1.960 x 10-% | 2.879 x 107 | 2.326 x 10~? | 5.195 x 10~°

Tabir 2: Fstimated variance of down time in a cycle for 9-state model (A = 107%)
using different acaling factors r

Numerical Standard Importance | Sealing
Result | Simulation Sampling | Factor r
l] 4055 x (0-5 | 4121 x 10-5 | 4.124 x 10-F 10?
+13.6% +3.8%
1.000 x 1010 16,165 x 10=1 | 4.027 x 10-1" 1!
“ +159.5% +3.7%

Table 3: Estimates of unavailability and 90% confidence intervals for a large
model (1,024,000 events)
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